20,587 research outputs found

    Ground-state properties of fermionic mixtures with mass imbalance in optical lattices

    Full text link
    Ground-state properties of fermionic mixtures confined in a one-dimensional optical lattice are studied numerically within the spinless Falicov-Kimball model with a harmonic trap. A number of remarkable results are found. (i) At low particle filling the system exhibits the phase separation with heavy atoms in the center of the trap and light atoms in the surrounding regions. (ii) Mott-insulating phases always coexist with metallic phases. (iii) Atomic-density waves are observed in the insulating regions for all particle fillings near half-filled lattice case. (iv) The variance of the local density exhibits the universal behavior (independent of the particle filling, the Coulomb interaction and the strength of a confining potential) over the whole region of the local density values.Comment: 10 pages, 5 figure

    Evading the sign problem in random matrix simulations

    Full text link
    We show how the sign problem occurring in dynamical simulations of random matrices at nonzero chemical potential can be avoided by judiciously combining matrices into subsets. For each subset the sum of fermionic determinants is real and positive such that importance sampling can be used in Monte Carlo simulations. The number of matrices per subset is proportional to the matrix dimension. We measure the chiral condensate and observe that the statistical error is independent of the chemical potential and grows linearly with the matrix dimension, which contrasts strongly with its exponential growth in reweighting methods.Comment: 4 pages, 3 figures, minor corrections, as published in Phys. Rev. Let

    A Feynman integral via higher normal functions

    Full text link
    We study the Feynman integral for the three-banana graph defined as the scalar two-point self-energy at three-loop order. The Feynman integral is evaluated for all identical internal masses in two space-time dimensions. Two calculations are given for the Feynman integral; one based on an interpretation of the integral as an inhomogeneous solution of a classical Picard-Fuchs differential equation, and the other using arithmetic algebraic geometry, motivic cohomology, and Eisenstein series. Both methods use the rather special fact that the Feynman integral is a family of regulator periods associated to a family of K3 surfaces. We show that the integral is given by a sum of elliptic trilogarithms evaluated at sixth roots of unity. This elliptic trilogarithm value is related to the regulator of a class in the motivic cohomology of the K3 family. We prove a conjecture by David Broadhurst that at a special kinematical point the Feynman integral is given by a critical value of the Hasse-Weil L-function of the K3 surface. This result is shown to be a particular case of Deligne's conjectures relating values of L-functions inside the critical strip to periods.Comment: Latex. 70 pages. 3 figures. v3: minor changes and clarifications. Version to appear in Compositio Mathematic

    A Non-Perturbative Treatment of the Pion in the Linear Sigma-Model

    Get PDF
    Using a non-perturbative method based on the selfconsistent Quasi-particle Random-Phase Approximation (QRPA) we describe the properties of the pion in the linear σ\sigma-model. It is found that the pion is massless in the chiral limit, both at zero- and finite temperature, in accordance with Goldstone's theorem.Comment: To appear in Nucl.Phys. A, 16 pages, 2 Postscript figure

    A subset solution to the sign problem in random matrix simulations

    Full text link
    We present a solution to the sign problem in dynamical random matrix simulations of a two-matrix model at nonzero chemical potential. The sign problem, caused by the complex fermion determinants, is solved by gathering the matrices into subsets, whose sums of determinants are real and positive even though their cardinality only grows linearly with the matrix size. A detailed proof of this positivity theorem is given for an arbitrary number of fermion flavors. We performed importance sampling Monte Carlo simulations to compute the chiral condensate and the quark number density for varying chemical potential and volume. The statistical errors on the results only show a mild dependence on the matrix size and chemical potential, which confirms the absence of sign problem in the subset method. This strongly contrasts with the exponential growth of the statistical error in standard reweighting methods, which was also analyzed quantitatively using the subset method. Finally, we show how the method elegantly resolves the Silver Blaze puzzle in the microscopic limit of the matrix model, where it is equivalent to QCD.Comment: 18 pages, 11 figures, as published in Phys. Rev. D; added references; in Sec. VB: added discussion of model satisfying the Silver Blaze for all N (proof in Appendix E

    Effective Operators for Double-Beta Decay

    Get PDF
    We use a solvable model to examine double-beta decay, focusing on the neutrinoless mode. After examining the ways in which the neutrino propagator affects the corresponding matrix element, we address the problem of finite model-space size in shell-model calculations by projecting our exact wave functions onto a smaller subspace. We then test both traditional and more recent prescriptions for constructing effective operators in small model spaces, concluding that the usual treatment of double-beta-decay operators in realistic calculations is unable to fully account for the neglected parts of the model space. We also test the quality of the Quasiparticle Random Phase Approximation and examine a recent proposal within that framework to use two-neutrino decay to fix parameters in the Hamiltonian. The procedure eliminates the dependence of neutrinoless decay on some unfixed parameters and reduces the dependence on model-space size, though it doesn't eliminate the latter completely.Comment: 10 pages, 8 figure

    Why Snails? How Gastropods Improve Our Understanding of Ecological Disturbance

    Get PDF
    The concept of equilibrium - the idea that a perturbed system will tend to return to its original state - is the basis for many foundational theories in ecology. Yet, the spatial and temporal dynamics of ecosystems are strongly influenced by disturbance. If a particular disturbance greatly alters local climatic conditions, gastropods should be among the first organisms to show a measurable response. The effects of human alteration of habitats (for example, conversion of forest to agriculture) have much longer-lasting effects than those of natural disturbances

    The Kohn-Luttinger Effect in Gauge Theories

    Get PDF
    Kohn and Luttinger showed that a many body system of fermions interacting via short range forces becomes superfluid even if the interaction is repulsive in all partial waves. In gauge theories such as QCD the interaction between fermions is long range and the assumptions of Kohn and Luttinger are not satisfied. We show that in a U(1) gauge theory the Kohn-Luttinger phenomenon does not take place. In QCD attractive channels always exist, but there are cases in which the primary pairing channel leaves some fermions ungapped. As an example we consider the unpaired fermion in the 2SC phase of QCD with two flavors. We show that it acquires a very small gap via a mechanism analogous to the Kohn-Luttinger effect. The gap is too small to be phenomenologically relevant.Comment: 5 pages, 2 figure, minor revisions, to appear in PR

    An Optimal Control Formulation for Inviscid Incompressible Ideal Fluid Flow

    Get PDF
    In this paper we consider the Hamiltonian formulation of the equations of incompressible ideal fluid flow from the point of view of optimal control theory. The equations are compared to the finite symmetric rigid body equations analyzed earlier by the authors. We discuss various aspects of the Hamiltonian structure of the Euler equations and show in particular that the optimal control approach leads to a standard formulation of the Euler equations -- the so-called impulse equations in their Lagrangian form. We discuss various other aspects of the Euler equations from a pedagogical point of view. We show that the Hamiltonian in the maximum principle is given by the pairing of the Eulerian impulse density with the velocity. We provide a comparative discussion of the flow equations in their Eulerian and Lagrangian form and describe how these forms occur naturally in the context of optimal control. We demonstrate that the extremal equations corresponding to the optimal control problem for the flow have a natural canonical symplectic structure.Comment: 6 pages, no figures. To appear in Proceedings of the 39th IEEEE Conference on Decision and Contro
    • …
    corecore